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ABSTRACT

A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to
combine statistical information from numerical cloud models with forward radiative transfer modeling. A
multivariate lognormal prior probability distribution contains the covariance information about hydrometeor
distributions that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved
by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval
method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz)
of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the
retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger
errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor
contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical
information, and future improvements to the algorithm are suggested.

1. Introduction

The promise of satellite-based passive microwave
remote sensing of precipitation has been that accurate
rainfall retrieval would be possible because microwave
radiation penetrates clouds and is a direct measure of
the underlying rain rate. As the field of microwave pre-
cipitation retrieval has been explored, evidence has ac-
cumulated indicating that the situation is more com-
plex. Empirical statistical methods that relate observed
microwave brightness temperatures to surface rain rate
(e.g., measured with radar) necessarily avoid consid-
ering the complexities of the interaction of microwave
radiation with real precipitating systems. These meth-
ods, while using a perfectly valid approach, have been
hampered by a lack of representative and accurate
ground truth. The microwave precipitation retrieval
methods that are based on radiative transfer calcula-
tions must have a model of the vertical structure of
precipitation, including the relevant hydrometeor spe-
cies. The prototypical simple physical algorithm is the
19-GHz emission method of Wilheit et al. (1977). In
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its earliest form, this method assumed a uniform rain
layer with a Marshall-Palmer distribution below the
freezing level with no ice particles and a prescribed
liquid water cloud. These assumptions allow a simple
relationship between the 19-GHz brightness temper-
ature and the rain rate to be derived from a radiative
transfer model. Many other microwave precipitation
algorithms that assume very simple precipitation
structures have been developed (e.g., Weinman and
Guetter 1977; Olson 1989; Liu and Curry 1992). A
common characteristic of most of these simple physical
models is the use of one observable, perhaps a com-
bination of several channels, that is related to surface
rain rate by assuming some type of hypothetical hy-
drometeor profile. Typically, there are a few homo-
geneous layers and the mass contents of the hydro-
meteors are slaved to the surface rain rate.

There have been several studies that have led to a
deeper understanding of how microwave radiation in-
teracts with realistic profiles of hydrometeors. Fulton
and Heymsfield (1991) qualitatively compared hydro-
meteor information inferred from multiparameter ra-
dar data of intense convection with brightness tem-
peratures at 18, 37, 92, and 183 GHz. Their results
suggest that even the lowest frequency (18 GHz) is sig-
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nificantly obscured by the large ice mass in deep con-
vection. Yeh et al. (1990) and Vivekanandan et al.
(1990) used radiative transfer models to simulate mi-
crowave brightness temperatures of radar-derived hy-
drometeor profiles and compared the results with
brightness temperatures observed from aircraft. The
use of microwave radiative transfer simulations of hy-
drometeor profiles derived from cloud models has led
to a number of useful insights. Adler et al. (1991) used
a three-dimensional simulation of a tropical oceanic
squall line to investigate brightness temperature-rain
rate relations at frequencies from 10 to 85 GHz. They
showed a large scatter in the relations for 19 GHz and
above due to variations in ice content and cloud liquid
water, which vary systematically with the nature (con-
vective or stratiform) of the precipitation. Mugnai et
al. (1990), and more recently Smith et al. (1992) and
Mugnai et al. (1993), used a bulk microphysics cloud
model and radiative transfer model to simulate fre-
quencies from 6 to 128 GHz. Their use of weighting
functions allowed a detailed examination of the effects
of the vertical distribution of various types of hydro-
meteors on the upwelling microwave radiation. They
found that most frequencies respond primarily to fluc-
tuations in graupel mass.

These modeling studies have shown that passive mi-
crowave measurements of precipitating clouds are sen-
sitive to many aspects of the vertical distribution of
various hydrometeor species and not solely to the sur-
face rain rate. Since the microwave radiation is sensing
the profile of hydrometeors and a number of frequen-
cies are potentially available, it should be profitable to
retrieve hydrometeor profiles rather than only the sur-
face rain rate. Profile retrieving algorithms are designed
to use all the available channels rather than just the
one or two that the simple models use. The vertical
distribution of hydrometeors is important in its own
right because it can be related to the vertical profile of
latent heat release that governs the coupling to dynam-
ical forcing (Tao et al. 1990). Profiling algorithms will
work over land as well as water, although with reduced
accuracy. Of course, simple physical models have their
uses when speed or simplicity are the driving concern,
but profiling algorithms potentially make the best use
of all the available data.

The first profile retrieving method was that of Kum-
merow (Kummerow et al. 1989; Kummerow et al.
1991). This method used an iterative scheme that
matches the observed brightness temperatures with
those simulated from a relatively small number of
somewhat ad hoc specified profiles. This method is the
furthest advanced of the profiling algorithms and has
been used successfully in a variety of situations (Kum-
merow and Giglio 1994a, 1994b). Obviously one can-
not expect to retrieve highly accurate detailed profiles
from a handful of microwave channels. In fact, since
there are typically multiple distinct profiles that can
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satisfy a small set of observations, other information
about the vertical distribution of hydrometeors is
needed to constrain the retrieval. Mugnai et al. (1993)
have developed a profile retriecval method that uses a
database of cloud model-derived profiles and their
corresponding simulated brightness temperatures.
Profiles with brightness temperatures close to the ob-
served ones are selected and combined using a weighted
average with the weights adjusted so as to match the
observations. A closely related algorithm that uses the
same cloud-radiation database (Marzano et al. 1994)
has been tested with the same land dataset as in the
validation experiment in section 4.

The profile-retrieving algorithm developed here also
uses cloud model information, though in a significantly
different way. The cloud model hydrometeor profiles
are used statistically to generate a probability density
function that represents the prior information about
microphysical structure. Forward radiative transfer
modeling of brightness temperatures is used to define
the conditional probability of the observations given a
particular hydrometeor profile. Bayes theorem com-
bines the prior distribution and the conditional distri-
bution to find the posterior probability density function
of the profile given the observation. In this work, the
most likely profile that matches the observations is then
found from the posterior probability function. A more
complete description of the method can be found in
Evans and Stephens (1993). Compared with the cloud-
radiation database approach, the Bayesian method has
the advantage of having a more formal way of intro-
ducing cloud microphysical information, which aids
in analyzing the behavior of the algorithm. The Bayes-
ian approach can generalize beyond the particular
cloud model profiles to analogous situations and picks
the a priori likeliest profiles rather than using all those
that are close to matching the observations. The
Bayesian retrieval method does not match the obser-
vations exactly, so the results are less affected by errors
in the radiative transfer modeling. On the other hand,
the Bayesian method is dependent on choosing appro-
priate forms for the probability distributions and on
the method by which the profiles are retrieved from
the posterior distribution. The Bayesian approach is
not guaranteed to produce reasonable-looking smooth
profiles as is the cloud-radiation database method.
Both methods depend critically on having correct mi-
crophysical information from cloud models.

A detailed description of the Bayesian precipitation
retrieval algorithm is given in the next section. A theo-
retical test of the method using brightness temperatures
simulated from cloud model output is done to deter-
mine the complexity required of the precipitation
profile. A limited validation experiment with data
from the Convection and Precipitation/Electrification
(CaPE) experiment is carried out. Brightness temper-
atures from the Advanced Microwave Precipitation
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Radiometer (AMPR) are used to retrieve hydrometeor
profiles, which are compared with CP-2 multiparam-
eter radar data. The reasons for the successes and fail-
ures of the algorithm are investigated and areas for
improvement of the method are discussed.

2. Bayesian precipitation retrieval method
a. The Bayesian framework

This retrieval method uses Bayes theorem to com-
bine forward radiative transfer modeling with statistical
information from numerical cloud model output. For
use here, Bayes theorem may be stated as

Joix(8]x) oc fxje(x|0)fo(0), (1)

where 0 represents the atmospheric state vector (i.e.,
hydrometeor profile) and x represents the vector of ob-
servations (e.g., microwave 7}). The prior probability
distribution of atmospheric parameters is fo(6),
Jxie(x|0) is the conditional probability distribution of
an observation given an atmospheric state, and
Joix(8]x) is the posterior probability distribution func-
tion of an atmospheric state given the observation. The
normalization of the posterior distribution has been
left out, hence the proportionality rather than equality.
The conditional distribution, which is the probability
of an observation given an atmospheric state, is closely
related to the forward problem, that is, computing ob-
servables from a given atmosphere using radiative
transfer. The prior distribution is the vehicle for extra
information about the atmospheric state that will re-
duce the ill-conditioned nature of the inversion. Since
a single profile is usually desired for a retrieval, the
maximum or the expected value of the posterior prob-
ability distribution can be used.

There are several advantages to using Bayes theorem
in a retrieval method:

1) Bayes theorem provides an elegant mathematical
framework for adding prior information about precip-
itating systems to improve the accuracy of retrieval.

2) Different types of observational data (e.g., mi-
crowave, radar, infrared) can be incorporated easily
because only the relatively well understood forward
problem needs to be reformulated for each type of data.

3) Estimates of the uncertainties of the parameters,
as well as the values, can potentially be computed, be-
cause the complete posterior probability density func-
tion is available.

4) If the probability distributions are formed cor-
rectly, then using Bayes theorem offers the choice of
finding either the most likely atmospheric state or the
unbiased mean state, as appropriate.

While Bayes theorem provides an overall frar _-vork,
the form of the prior and conditional probability den-
sity functions (pdf’s) must still be specified. In the
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Bayesian framework, probability distributions do not
represent the frequency of occurrence but rather our
degree of belief or understanding of a system. Thus,
the functional forms of the pdf’s are to some extent
arbitrary. There is a trade-off between simplicity and
realism in the functional forms of the Bayesian pdf’s,
with the goal to capture the necessary behavior with
as few parameters as possible. The conditional prob-
ability distribution is constructed simply by assuming
that the observation vector x is normally distributed
around the simulated observation vector calculated
from the forward model g(6):

Jrie(x|6) = N[x — g(6), o]. )]

The observation uncertainties (o,, for each element m
of the observation vector) can be thought of as a com-
bination of the actual observation errors and the errors
in the forward model. Independence is probably a good
assumption for the observation errors but may not be
so appropriate for the forward modeling errors. The
maximization of the posterior probability function, by
also tending to maximize the conditional probability,
assures that the simulated observations are close to the
actual observations. It does not, however, fit the re-
trieval to the noise in the observations or to the mod-
eling error if the o’s are chosen appropriately. The ¢’s
can be thought of as controlling the trade-off between
fitting more to the data versus being closer to the prior
distribution.

Use of a prior probability distribution of atmospheric
parameters is the key improvement of the Bayesian
retrieval algorithm over previous precipitation profile
retrieval methods. The prior information about the at-
mosphere helps the retrieval choose the best precipi-
tation structure of the many that satisfy the observa-
tions. For this work, the prior probability distribution
is assumed to be a multivariate lognormal distribution.
The hydrometeor species most important for micro-
wave observations are known to have approximately
lognormal distributions, as studies of radar data from
GARP (Global Atmospheric Research Program) At-
lantic Tropical Experiment (GATE) have shown
(Kedem et al. 1990). The multivariate aspect of the
prior probability distribution is crucial because this is
how information about the correlations between hy-
drometeors at various levels is introduced. The form
of the prior distribution is

1

Jo(0) = 7
[(27)" detC]2 I1 ¢,
i~1

X exp| — % uw-w'Clu-wl|, 3

where u = Inf is the log of the precipitation parameter
vector, u is the first log moment (mean vector) of the
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atmospheric vector, and C is the central second log
moment (covariance matrix) of the atmospheric vector.
The constants u and C are measured statistically from
the numerical cloud model output. This functional
form is the simplest way to introduce correlations be-
tween variables. However, it cannot represent nonlin-
ear relations between variables, bimodalities, etc. One
reason to use a simple function like this, rather than a
higher-order function, is that a more general function
having more parameters requires substantially more
data for a reliable fit.

Since the Bayesian precipitation retrieval method
uses a radiative transfer model to simulate observations,
it is necessary to incorporate an underlying model of
a precipitating atmosphere. The structure of the pre-
cipitating atmosphere may be chosen with a high degree
of flexibility as to the number and thicknesses of the
layers and what parameters are variable in the layers.
There is an important distinction between the total set
of atmospheric parameters that are used in the forward
radiative transfer calculation and the subset of those
parameters that are free to be adjusted in the retrieval
process. A layer is specified by its thickness, interface
temperature, water vapor mass content, cloud liquid
water mass content, and the parameters that describe
the precipitating hydrometeor distributions. The rain
and up to two species of ice particles are assumed to
have exponential size distributions. The mass content
and the average particle diameter specify the two pa-
rameters of the distribution. In addition, the bulk den-
sity of the ice particles is a parameter, so that two dif-
ferent ice species may be simulated (e.g., graupel and
snow). The particles are assumed to be spherical since
many precipitation-size hydrometeors are roughly
spherical or randomly oriented, and the errors intro-
duced by this assumption are small compared to other
errors.

Besides the parameters that define each layer, there
are also parameters for the surface temperature and
emissivity. Because of the lack of prior information
about surface parameters, such as ocean surface wind
speed and soil moisture, the ocean is assumed to be
flat and a frequency-independent emissivity is used for
land. A precipitation structure is set up for a retrieval
by fixing the number of layers and choosing the at-
mospheric and surface parameters that will be allowed
to vary. This defines the parameters making up the
atmospheric state vector. Varying all the parameters
in a precipitation structure with many layers would
lead to an impossibly large number of free parameters,
so a judicious choice has to be made. Section 3 tests a
number of precipitation structures to determine the
best trade-off between the convenience of a few param-
eters versus the more accurate representation of many
parameters.

Numerical cloud models are the only feasible source
of the detailed information on the vertical distribution
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of hydrometeors that is needed to make a suitable prior
distribution. Radar data, especially multiparameter
data, are also a source of detailed information, but it
cannot provide cloud liquid water amounts, size dis-
tribution information for ice particles, or distinguish
very well between types of ice particles. The cloud
models used here have one parameter distributions for
the precipitation species (i.e., mixing ratio is predicted),
so mass content is the only hydrometeor parameter
that is variable in the retrieval. The precipitation struc-
ture parameters for each layer are computed from the
cloud model output by averaging over the appropriate
cloud model levels. The mean vector and covariance
matrix of parameters, which determines the multivar-
iate lognormal prior distribution, are calculated from
the set of cloud model profiles. All hydrometeor mass
contents are clipped at 107* g m™3 to prevent the zero
mass points from contaminating the lognormal distri-
bution parameter estimation too much. A vertically
integrated rain mass cutoff is used to avoid nonraining
pixels that do not belong to the underlying lognormal
distribution. Distributions of parameters not obtainable
from cloud model output can be specified with a mean
and standard deviation.

b. Forward radiative transfer modeling

The forward radiative transfer model is the core of
the conditional probability distribution part of the pre-
cipitation retrieval method. The forward model cal-
culates the gaseous absorption, particle scattering, and
radiative transfer from the precipitation structure for
each channel in the observation vector. Any number
of channels, each with specified frequency, angle, po-
larization, and observation width (o,,;), may make up
the passive microwave observation vector.

The microwave absorption due to oxygen, water va-
por, and cloud water are computed using Liebe’s
MPM92 model (Liebe 1989; Liebe et al. 1993) and are
stored as coefficients before proceeding with the re-
trieval. The absorption coefficient for water vapor is
obtained by computing the extinction at 0% and 100%
relative humidity for each layer and frequency. The
forward model then uses these coefficients by com-
puting the average relative humidity of a layer.

The microwave scattering properties of the expo-
nential distributions of precipitating hydrometeors are
found by interpolating from tables of precomputed Mie
scattering results. An interpolation approach is nec-
essary in view of the many forward model computa-
tions that must be carried out for each retrieval. All of
the tables are two dimensional, and the scattering
quantities (extinction, single-scattering albedo, and
asymmetry parameter) are bilinearly interpolated. For
rain, the two dimensions are average diameter and
temperature, and for ice they are average diameter and
particle density. The Mie tables are computed using
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an adaptive scheme that varies the number of grids of
average diameter to ensure that the interpolation from
the tables will be within a desired tolerance (1%-2%
used here). The index of refraction of water 1s computed
following Ray (1972) and for ice is interpolated from
the tables in Warren (1984). For ice particles with a
density lower than solid ice, the index of refraction is
reduced according to the ice volume fraction using the
Lorentz-Lorenz (Debye) mixing rule. The Mie cal-
culations are performed by integrating over 100 steps
up to a maximum diameter of 10 times the average.

If the mass content of a hydrometeor species is a
variable in the precipitation structure, but the average
size parameter is not, then either the average size of
the exponential distribution is fixed at a specified value
or it may be related to the mass content using the
Rutledge and Hobbs (1984) parameterization. This
scheme fixes the intercept Ny of the exponential dis-
tribution and computes the average diameter parameter
from the mass content and the particle density. For
rain, Ny is 8000 mm~' m™* and 4000 mm™' m™> for
snow or graupel.

The radiative transfer model used for simulating
passive microwave measurements is an Eddington-type
plane-parallel two-stream model (e.g., Weinman and
Davies 1978). The two-stream model, while less ac-
curate than a multistream model or a model that takes
into account the true three-dimensional structure, is
necessary in view of the computational burden of the
many forward calculations the retrieval method re-
quires. Kummerow (1993) has carried out a compar-
ison between the Eddington approximation and a
plane-parallel multistream (discrete ordinate) model,
showing that the differences in microwave brightness
temperatures are less than 3 K for realistic precipitating
cloud profiles. The plane-parallel assumption is likely
to be a more significant problem, but we leave for the
future the development of parameterizations for deal-
ing with this complicated issue. The Rayleigh-Jeans
approximation is used so the transfer calculations are
done in terms of brightness temperatures.

When modeling low-density ice particles at 85 GHz,
there are large errors in the Eddington approximation.
The reason for these errors is the high asymmetry pa-
rameter computed by Mie theory for the low index of
refraction obtained from the mixing rule. The asym-
metry parameter is greater than 0.85 for low densities
(0.1 gcm ™) and mean diameters larger than 1.00 mm.
For near-nadir angles, the Eddington approximation
gives poor results for an asymmetry parameter greater
than around 0.6. The Eddington comparison in Kum-
merow (1993) considered only Marshall-Palmer dis-
tributions of solid ice and thus did not have this prob-
lem. The standard method for dealing with high asym-
metry parameters is to use the delta-Eddington method
(Joseph et al. 1976). This modification represents the
highly peaked phase function by a delta function and
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the normal Eddington phase function with a lower
asymmetry parameter. The resulting scaled optical
properties can be stored in the tables, and the regular
Eddington radiative transfer model used unmodified.

The boundary conditions for the radiative transfer
model are the 2.7-K blackbody cosmic background ra-
diation from above and surface emission and reflection
from below. The surface type is assumed to be known
as either land or water. The land surface i1s modeled as
a Lambertian reflector with a frequency-independent
emissivity. The water surface is modeled as a flat Fres-
nel reflector whose index of refraction depends on fre-
quency and the climatological temperature. The only
source of polarization in this radiative transfer model
is from a water surface where the emissivity depends
on the polarization. For simulating observations from
the AMPR instrument, which mixes the polarizations
as it scans, the final brightness temperature is a linear
combination of V (vertical) and H (horizontal) polar-
izations according to the observation angle.

¢. Retrieval of hydrometeor profiles

From the prior probability distribution and the for-
ward model, it is simple to compute the posterior dis-
tribution from (1) for any given atmospheric state vec-
tor. What is needed, however, is to find the single at-
mospheric state that represents the best retrieved profile
from the high-dimensional posterior function. For sin-
gle-pixel retrievals that are to be validated against an-
other data source, we think the most appropriate ap-
proach is to find the “most likely” profile by maxi-
mizing the posterior probability function. On the other
hand, for remote sensing the mean precipitation profile
over a given area and time, the best approach is to
integrate the posterior density function to find the mo-
ments that specify the distribution. One could use the
expected value for single-pixel retrievals as well, but
the simulated observations from these retrievals can
be quite far from the actual observations.

The appropriate method for finding the mean profile
over a set of observations is to estimate the parameters
of an assumed lognormal distribution of precipitation.
The correct procedure for doing this is to integrate over
the posterior distribution, to compute the first and sec-
ond log moments for each observation, and average
these moments over the set of observations, thereby
improving the estimate of the distribution parameters.
This method is not biased to lower values of rain rate—
for example, by missing the rare large rain events—as
is simple averaging of pixel-by-pixel retrievals. Because
of the high dimensionality of the posterior density
function, the only feasible way to integrate over it is
to use Monte Carlo integration. Because the prior
probability distribution does not change over a set of
retrievals and is a simple function, it can be absorbed
into the sampling of the points; that is, the Monte Carlo
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random points (profiles) are chosen according to the
multivariate lognormal prior distribution. Although a
large number of random points are needed to achieve
adequate accuracy, a set of observation pixels may be
processed in parallel by evaluating the forward model
only once for each random profile. This method was
implemented but not used here because single-pixel
retrievals are desired.

The approach used for the retrievals shown below
is to maximize the posterior probability density func-
tion. There is an appeal in finding the maximum of
the posterior distribution because then the retrieval is
the most likely atmospheric state. There is, however,
some arbitrariness in ‘‘maximizing probability.” The
probability of a continuous distribution at a single point
is zero; only ranges have nonzero probabilities. Fur-
thermore, the maximum of a probability density func-
tion depends upon what space the density function is
expressed in. This can be seen by dividing the density
function up into discrete bins; which bin has the max-
imum probability then depends on how the bins are
spaced. Here we use logarithmically spaced ranges. It
is convenient to define an objective function J to be
minimized, which (to within a constant) is the negative
of the log of the posterior function. The objective func-
tion is then

Nobs _ 2
Je o e+ L saOF

m=1 Tm

C))

A somewhat complex algorithm is used to minimize
the objective function in an attempt to deal with the
problem of multiple local minima. The prior density
function is very smooth and relatively broad. In the
usual case of many more variable parameters than ob-
servations, the forward objective function has a sharp
valley that is presumably zero in a large subspace; that
1s, there are many precipitation profiles that exactly
satisfy the observations. The purpose of the prior dis-
tribution is to lift this degeneracy so there will be one
lowest point. There can be (and are) local minima that
trap traditional optimization techniques. An optimi-
zation method that can deal with local minima, called
“simulated annealing,” was tried and found to be too
slow. Since the objective function is basically smooth,
a modification of traditional optimization algorithms
was found to be effective.

The idea behind the algorithm is to start off a stan-
dard optimization routine from a number of places
that are likely to be close to the desired global mini-
mum. This is done by precomputing the simulated ob-
servations with the forward model for a large set of
precipitation profiles (typically 10° chosen from a
multidimensional lognormal distribution. For each
observation vector, those profiles that match the ob-
servations to within a certain distance are selected.
These are sorted by the value of the prior probability
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function and several of the highest prior profiles are
used to initialize Powell’s direction set method of op-
timization (see Acton 1990).

The purpose of doing the minimization a number
of times from different starting points (5~15 used here)
is to attempt to make sure that the resulting lowest
function value is close to the true global minimum. A
theoretical test (similar to the one in the next section)
was done to try to determine if this method overcomes
the problem of multiple local minima. Optimizations
with just a few starting points give retrieved profiles
very close to those for 32 initial points. Doing multiple
optimizations does mean that the retrieval algorithm
takes an excessive amount of computer time. The
number of function evaluations made by the optimi-
zation method goes as the square of the number of
variables. In the CaPE validation test below, an average
of 14 000 posterior probability evaluations were made
for each pixel. Since the required minimum of five
optimization tries nearly always got the same results,
a single optimization probably would be adequate, giv-
ing 2800 function evaluations. Little attempt has been
made to speed up the optimization process, and it is
possible that better methods could be developed in the
future.

Besides retrieving the atmospheric profile, the pos-
terior distribution may also be used to compute un-
certainties in the retrieved parameters. There are a
number of methods that could be used to obtain the
uncertainties, depending on the definition of the error
bars. Probably the most correct definition of the un-
certainty comes from the marginal posterior distribu-
tion, that is, the one-dimensional function that remains
after integrating over all the other parameters. The
simplest niethod for computing this type of marginal
error bar is to use the Monte Carlo integration method
to find the second moment for each variable. If the
maximum probability density function method is used,
one may define a parameter uncertainty in which the
other variables are held fixed at their retrieved values.
If there is significant correlation between the parameters
making up the precipitation structure profile, then this
method would give smaller uncertainties than the more
correct method. Because of the difficulties in inter-
preting the uncertainties with this method, error bars
are not computed for the single-pixel retrievals done
in this work.

3. Theoretical simulation test

The Bayesian precipitation retrieval method is a very
flexible and complex system with choices to be made
on the precipitation structure, the width of the forward
probability distribution, and how the prior probability
distribution is made. To determine the effect of these
choices, theoretical tests are performed by simulating
upwelling brightness temperatures from cloud model
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fields and performing retrievals on these synthesized
observations. The advantages of theoretical tests are
that one may control the simulation and retrieval pro-
cesses to look into particular issues and that the “true”
hydrometeor profiles are known.

The cloud model output used for the theoretical test
is from the two-dimensional GATE tropical squall-line
simulation by Tao and Simpson (1989) using the God-
dard cumulus ensemble (GCE) model. The GCE model
used the microphysical scheme described in Rutledge
and Hobbs (1984), which has two categories of liquid
water (cloud water and rain) and three categories of
ice phase (cloud ice, snow, and graupel). The precipi-
tating hydrometeors have exponential distributions
with fixed intercepts, so each species is specified by a
single parameter, the mass content. Three regions from
two model times (2 and 8 h) comprising 300 pixels are
selected for the theoretical tests. The microwave radia-
tive transfer simulations are carried out for 10.7, 19.4,
37.0, and 85.5 GHz for horizontal polarization at an
observation angle of 53°. The full phase function in-
formation is computed from Mie theory. The radiative
transfer is computed using the spherical harmonic spa-
tial grid model (Evans 1993) in plane-parallel mode
for land (emissivity of 0.9) and flat water (Fresnel) sur-
faces. To make the synthetic observations, 1-K rms
Gaussian noise is added.

. The purpose of the precipitation structure test is to
determine how the accuracy of the retrieval depends
on the number of layers and complexity of the hydro-
meteor representation. A precipitation structure pro-
vides the framework for the retrieval, specifying the
thickness of the layers and which parameters are al-
lowed to vary in the retrieval. The 10 structures (listed
in Table 1) range from a two-layer ice-above-rain
structure to a structure with variable rain, snow, grau-
pel, cloud water, water vapor, and temperature. The
retrievals are done with the forward probability distri-
bution width g, set to 3 K for each channel. The prior
probability distribution parameters are computed from
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15 1-h cloud model intervals, using an integrated rain
cutoff of 0.04 kg m~2 (about 1 mm h™').

The basic results of this test are rms differences in
hydrometeor mass content between the retrieved pro-
files and the original cloud model. Figure 1 shows the
error in surface rain mass for land and water retrievals
as compared to the error of assuming climatology from
the cloud model priors. As expected, the error in rain
retrieval is much worse over land than water, except
for area A4, from the developing stage, which has small
amounts of ice. The error over land is much worse for
those structures that have no cloud water (1 and 4).
The error is the same for structures 5 and above except
for structure 9, which has increased error because of
the greater variability of its 1-km-thick lowest layer.
The retrieved rms error is a smaller fraction of the cli-
matology error when measured logarithmically. The
structures 5 and above are equivalent in the retrieved
average integrated rain. The retrieval of integrated ice
(not shown) is significantly more accurate for structures
that include cloud water, and structures 5 and above
have equivalent error. The fractional error for cloud
water is much larger than for rain or ice, though the
retrieval is considerably better than assuming a fixed
cloud water amount.

The results of this test show that there is little to be
gained from using precipitation structures more com-
plex than the five-layer structure 5 with rain, ice, and
cloud water. Simpler two- or three-layer structures do
not appear to work as well. Comparison of structures
4 and 5 indicates that including cloud water is impor-
tant. The extra variables (water vapor and temperature)
of structure 10 neither help nor hurt, but it does take
much longer to optimize with that many variables.
These conclusions give some indication of what pre-
cipitation structures to use for Bayesian precipitation
retrieval but cannot be generalized automatically to all
other situations.

Tests of the other input choices in the retrieval
method were performed in a similar manner. The re-

TABLE 1. Variable parameters in precipitation structure tests. The number of layers and variables is listed for each structure.
The range (km) that each hydrometeor is variable is given (N means none, “C” means climatological value).

Height range that parameter is variable

Precipitation

structure Ny Near Rain Snow Graupel Cloud Vapor Temperature
1 2 2 0-4 N 4-8 N C C
2 2 4 0-4 N 4-8 0-8 C C
3 3 7 0-5 N 4-8 0-8 C C
4 5 6 0-5 N 4-10 N C C
5 5 11 0-5 N 4-10 0-10 C C
6 ) 14 0-5 4-10 4-10 0-10 C C
7 7 14 0-5 N 4-12 0-10 C C
8 7 18 0-5 4-12 4-12 0-10 C C
9 11 22 0-5 N 4-12 0-10 C C
10 6 27 0-5 4-11 4-11 0-11 0-7 0-11
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F1G. 1. Arithmetic rms retrieval error of surface rain mass content for the 10 precipitation
structures for each of the three test areas. The retrieval error over water and land is compared
with the error of assuming a fixed climatological value from the prior information.

trievals are not highly sensitive to the width of the for-
ward probability distribution. The error increases if the
observation width is much below the typical size of the
forward modeling error and also increases for large
widths as the retrievals move toward the climatological
prior value. The covariance information in the prior
probability distribution is important, but the retrievals
are not very sensitive to the stage of storm development
in the cloud model. These tests have a number of lim-
itations, including the simplifications of the radiative
transfer modeling and using the same cloud model
output to make both the prior distribution and to syn-
thesize the brightness temperatures. Real data will give
worse retrieval results because of larger modeling errors
and less applicable priors than was the case for these
tests.

4. CaPE experiment validation test

Any proposed remote sensing inversion technique
must be validated by using the method on field obser-
vations and comparing the results with other accepted
measurement techniques. Precipitation remote sensing
validation is somewhat problematic because there are
no highly accurate area-averaged measurement tech-
niques. Literal ground truth in the form of rain gauges
offer only point measurements, and the very dense
gauge networks needed for measurements in a collo-
cated case study are impractical. Radar observations

_give the needed area and/or volume coverage but with
uncertainties in rainfall estimation of perhaps a factor
of 2 from uncertainties in drop size and precipitation
inhomogeneities (Atlas and Ulbrich 1990; Joss and
Waldvogel 1990). Polarimetric radars provide higher

accuracy for rainfall estimation than radars that mea-
sure reflectivity only.

A major component of a space-based precipitation
retrieval method that is not yet implemented in the
Bayesian precipitation retrieval system is a way of
dealing with beam filling, that is, the effects of vari-
ability within the radiometer field of view. Fortunately,
the beam filling problem can be reduced substantially
by using data from high-resolution aircraft-based mi-
crowave radiometers. Another reason for using high-
resolution aircraft data is that the prior information
for the retrieval is obtained from a limited amount of
cloud model output with 1-km resolution.

The passive microwave data used for this validation
are from the AMPR, which is the latest National
Aeronautics and Space Administration (NASA) air-
craft-based microwave instrument appropriate for pre-
cipitation sensing. The AMPR has a wider range of
frequencies (from 10 to 85 GHz) than previous instru-
ments, such as the Microwave Precipitation Radiome-
ter, and so is better for testing multichannel algorithms.
The AMPR has very high resolution (from 0.6 to 2.8
km), which should resolve much of the spatial vari-
ability of convective precipitation. The first organized
field experiment that the AMPR flew in was the CaPE
experiment in central Florida during the summer of
1991 (Williams et al. 1992). The AMPR and CP-2 data
used for the validation test are from this experiment,
during which collocated AMPR and CP-2 data of con-
vective precipitation were acquired over the ocean and
land.

a. The AMPR instrument and data

The AMPR has been designed and built in the last
five years under the direction of the NASA Marshall
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Space Flight Center (Spencer et al. 1994; see also Vi-
vekanandan et al. 1993). The AMPR mounts in the
ER-2 aircraft which cruises at 20 km, allowing it to
overfly deep convection. The AMPR has the same
multifrequency feedhorn as the Special Sensor Micro-
wave/Imager (SSM/I) for its 19.35-, 37.1-, and 85.5-
GHz channels and an additional specially designed
feedhorn for 10.7 GHz. The 3-dB beamwidths are 8.0°
for 10.7 and 19.35 GHz, 4.2° for 37.1 GHz, and 1.8°
for 85.5 GHz, giving ground resolutions of 2.8, 1.5,
and 0.6 km, respectively. The instrument scans across
the track through nadir from +45° (right side) to —45°
(left side), in 50 beam spots every 1.8°. The three lower
frequencies are thus oversampled in that they are sam-
pled multiple times per beamwidth. A new scan is
started every 3.0 s, which at the 200 m s™! cruising
speed of the ER-2 corresponds to 0.6 km.

Cross-track scanning with a 45° offset flat-plate re-
flector causes the instrument’s polarization basis to ro-
tate relative to the scene orientation. While the single
polarization is always linear it rotates from horizontal
at # = +45° (start of scan) to vertical at § = —45° (end
of scan). The polarization measured by AMPR thus
varies with angle but is a linear combination of the
vertical and horizontal polarization of the scene given
by

THMPR = TH 062(9 — 45°) + TV sin(8 — 45°).  (5)

The 50-ms spot integration time results in a receiver
noise rms ranging from 0.15 to 0.30 K. After every
fourth scan, the reflector rotates to view hot and cold
calibration targets during one scan period. The absolute
accuracy is estimated to be no better than several de-
grees, especially for the coldest brightness temperatures
that must be extrapolated beyond the calibration tem-
perature.

The CP-2 multiparameter radar is operated by the
National Center for Atmospheric Research. It provides
dual-frequency operation at S band (3 GHz) and X
band (10 GHz) with matched 0.9° beamwidths (Bringi
and Hendry 1990). Pulse-to-pulse polarization switch-
ing at S band provides for the measurement of differ-
ential reflectivity Zpr = 10 log(Zyn/Zyy) in addition
to the standard horizontal reflectivity Z;y. At X band,
the linear depolarization ratio LDR and X-band re-
flectivity can be measured. The X-band specific atten-
uation can be derived by comparing S- and X-band
reflectivity.

Two AMPR datasets are used for the precipitation
algorithm validation, one over land and one primarily
over ocean. Uncooperative weather, the requirement
that the precipitating systems be within CP-2 range,
and several AMPR equipment failures severely limited
the number of useful CaPE AMPR CP-2 datasets
available for algorithm validation. Figure 2 shows a
map of the experiment area with the location of the
CP-2 radar, various upper-air stations, and the two
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F1G. 2. Map of the CaPE experiment area with locations of the
two AMPR datasets. The arrows in the dataset boxes show the heading
of the ER-2. The CP-2 radar position and the locations of the upper-
air stations are also shown.

AMPR datasets. The datasets were both from 12 Au-
gust 1991 and are identified here by their starting times:
2059 UTC for the one over land and 2152 for the one
over the ocean. The centers of the AMPR datasets are
about 100 km from CP-2. There is an additional dataset
available 40 km northwest of CP-2 (2226 UTC), which
is not used here because the lower frequency channels
are contaminated by the combination of land and
ocean background. The two datasets are made by com-
bining the AMPR and CP-2 data (Vivekanandan et al.
1993). The CP-2 data are remapped into the AMPR
scanning coordinate system by tracing AMPR beams
through a three-dimensional grid of CP-2 data with
0.5-km spacing and extracting the closest grid point
for each 0.5-km altitude. The natural coordinate system
for AMPR is the pixel-scan system. The pixel number
from 1 to 50 (right side to left side) is the cross-track
coordinate, while the scan number (starting at 1 in the
dataset) is the along-track coordinate (in the direction
the aircraft flies). Since the aircraft flew directly over
the convective cells, the nadir pixel (25) is used in the
following retrievals. Scans 1-60 of the 2059 UTC da-
taset and scans 3060 from the 2152 UTC dataset are
chosen to avoid the coastal scans.

Figure 3 shows the AMPR brightness temperatures
along the nadir track for the ocean and land datasets.
The ocean (2152 UTC) dataset has a precipitating cell .
near scan 35 with raised 10-GHz brightness tempera-
tures and depressed 37- and 85-GHz temperatures. The
19-GHz channel is saturated near 250 K over the heavy
rain area before scan 40. The elevated 19- and 37-GHz
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brightness temperatures indicate lighter rain from scan
45 to beyond scan 55. Water vapor emission prevents
the 85-GHz channel from going much below 270 K
in the nonraining area. In the 2059 UTC dataset, the
large brightness temperature depressions for the 37-
and 85-GHz channels (to 100 K) show that the con-
vection over land is much stronger than in the ocean
dataset. There is also a substantial brightness temper-
ature decrease at 19 GHz. The dip in the 10-GHz
channel near scan 20 is probably due to wet ground.
Further description of these two AMPR datasets and
the collocated CP-2 radar data is available in Turk et
al. (1994).

b. RAMS cloud model simulation

The prior probability information for the validation
experiment is obtained from a simulation performed
with the Colorado State University Regional Atmo-
spheric Modeling System (RAMS) (Tripoli and Cotton
1982; Cotton et al. 1982; Cotton et al. 1986). The sim-
ulation was a modification of a two-dimensional sum-
mertime Florida sea-breeze simulation performed by
Nicholls et al. (1991). The horizontal domain of 400
km has a land surface for the center 200 km. The hor-
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izontal resolution is 1 km, and vertical resolution ranges
from 400 to 1000 m. The simulation was started at
0800 local standard time (LST) and run for 14 h. The
simulation performed was like experiment 3 in Nicholls
et al. (1991). Their type 3 wind profile was used for
initialization as it was the most similar to the winds
obtained from the CaPE upper-air stations on the
morning of 12 August 1991. The initial profiles of
temperature and water vapor were obtained from the
upper-air soundings and differ from that of Nicholls
et al. (1991), mainly in having less water vapor above
3 km.

The RAMS simulation used five categories of hy-
drometeors: liquid cloud droplets, rain, pristine ice
crystals, aggregates, and graupel. The cloud droplets
and pristine ice crystals have a monodisperse size dis-
tribution whose size varies. An exponential size distri-
bution is assumed for the large hydrometeors, and only
the mixing ratio is predicted. Another difference be-
tween the simulation described in Nicholls et al. (1991)
and the one used here are the microphysical assump-
tions. In this simulation the average particle diameters
were specified at 0.54 mm for rain, 3.30 mm for ag-
gregate, and 1.2 mm for graupel. The bulk densities of
the ice particles are 0.9 g cm™> for graupel and 0.03
g cm > for aggregate. These values are the default
RAMS microphysics, except for the somewhat larger
graupel (1.2 mm vs 1.0 mm). The high density and
large diameter of the “graupel” category is more like
that of hail.

The sea-breeze circulation develops a precipitating
cloud about 3 h into the simulation. The temperature,
water vapor mass content, and hydrometeor mass con-
tents from the simulation are stored every 15 min from
180 to 840 min simulated time. Figure 4 shows the
total precipitating hydrometeors for six cloud model
times at 2-h intervals. At first, the west coast sea-breeze
front is stronger and produces a line of precipitation
(240 min). By 360 min, the west coast precipitation
has died out and the east coast front convection is pro-
ducing rain. The convection moves west and rapidly
gathers strength, perhaps from the collision of the two
sea-breeze fronts (480 min). The storm then grows and
develops a stratiform region, while the convective re-
gion is reduced in intensity (600 min). In the early
evening, the system dissipates but still produces light
rain.

¢. Radar validation methods

There are two approaches to validating hydrometeor
profiles retrieved from passive microwave measure-
ments using radar observations. One is to retrieve pro-
files from the radar data and compare hydrometeor
mass contents, for example. The other is to simulate
radar observables from the retrieved size distributions
and compare these. The advantage of the latter ap-
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FIG. 4. Total precipitating hydrometeor (aggregate, graupel, rain)
mass content for six model times from the Florida sea-breeze sim-
ulation after Nicholls et al. (1991). The mass content is displayed
logarithmically from 1073 to 10' g m™,

proach is that the uncertainties of radar inversion are
avoided. The disadvantage is that comparison is done
in terms of radar parameters (e.g., reflectivity) instead
of the desired end product of hydrometeor mass con-
tent or rainfall rate. Both approaches are used for this
validation experiment.

The radar simulation computes reflectivity (dBZ)
at S band. Attenuation at X band is not available for
the validation, because the large radar range (=100
km) made the attenuation unreliable. The same mi-
crophysical assumptions as for the Bayesian retrieval
method are used to derive the hydrometeor-size dis-
tribution and other properties. The Mie calculation and
integration procedure is the same, but backscattering
is computed and converted to reflectivity. Differential
reflectivity Zpg is not simulated, because the calcula-
tions assume spherical particles. The simulated reflec-
tivity is compared with the average of the horizontal
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and vertical reflectivity, which is fairly close to the
equivalent volume sphere reflectivity for oblate rain-
drops.

The process of inverting radar observables to find
hydrometeor distributions is not unique and is an area
of active research. Since S-band radar is sensitive only
to larger sizes, cloud liquid water content cannot be
obtained. Two radar inversion methods are used here.
The method recently developed by Turk et al. (1994)
retrieves the three parameters (Ny, A, and m) for a
gamma size distribution N(D) = Ny D™ exp(—AD) of
equivalent volume spheres. The type of particle (water,
ice, or melting) is assigned based on Zpg, and a particle
density of p = 0.75 g cm 3 is assumed for ice. The
procedure starts near the surface where an N, and m
are assumed and A computed to agree with the reflec-
tivity. The method then moves upward and adjusts the
three parameters smoothly, keeping agreement with
the reflectivity. As the reflectivity decreases, A increases
and m decreases. The profiles are processed starting
from the core region and moving radially outward. The
particle mass content is computed from the size dis-
tribution and compared with the passive microwave-
derived mass content.

The other method retrieves both parameters of the
exponential distribution but only for rain. Using the
fact that the oblateness of raindrops is related to their
volume, Seliga and Bringi (1976) showed how differ-
ential reflectivity could be used to infer the mean size
of an exponential distribution of raindrops. With im-
proved measurements of drop oblateness, Illingworth
and Caylor (1989) computed simple fits to the Dy—Zpr
relation (Dg is median volume diameter), which agreed
closely with radar observations they presented. Table
2 lists the fit coefficients for Dy—Zpg and also for Z;—
Zpr with 1 fixed distribution intercept N,. The fits give
Zy correc to 0.2 dBZ. The retrieval procedure com-
putes the mean drop diameter and distribution inter-
cept from Zy and Zpg with the formulas in Table 2
and then calculates the corresponding mass content.
The major problem with this inversion method appears
to be contamination of the rain signal with ice below
the freezing level. Large, nearly spherical ice particles
decrease Zpgr while increasing Z. This is interpreted
as small average raindrop size with high reflectivity,
which leads to extremely large computed mass con-
tents. This problem is dealt with by limiting the ex-
ponential distribution intercept N, to a maximum
value of 8000 mm™' m~3. In addition, the rain mass
is retrieved only in areas below 4 km and with Zpg
= 1.0 dB.

d. Bayesian precipitation retrieval setup

The previously described procedures are used to
perform the hydrometeor profile retrievals from the
cloud model output and AMPR brightness tempera-
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TAaBLE 2. Fit coefficients for Dy~ Zpr and Z;—Zpg relations for raindrops from Illingworth and Caylor (1989) (Table 3). The first fit (3.67
D = Dy = Z;a,Zbr; Zpr in decibels, Dy in mllhmeters) is used to find the exponential distribution slope or mean size D from Zpg. The
second (Zy = Z; a,ZDR, for Ny = 8000 mm™' m™3; Zpg in decibels, Zy in dBZ) is used to find the intercept N, by scaling N, to match Z.

The fits assume a maximum drop diameter of 10 mm.

ay a a, as a, Zpr range (dB)
0.4453 1.311 —0.9074 0.3863 ° 0.1-1.0
0.5998 0.6762 —0.04640 0.003804 1.0-4.5
2.620 95.14 -162.8 159.0 —59.15 0.1-1.0
16.58 22.64 —5.020 0.6882 —0.03818 1.0-4.5

tures. A seven- layer precipitation structure with vari-
able parameters listed in Table 3 is used. Only the- hy-
drometeor mass contents are variable; the mean par-
ticle size is fixed. For the land case, the surface
emissivity is variable (i.e., retrieved) and a prior dis-
tribution with mean of 0.85 and standard deviatior of
0.05 is assumed. For the ocean case, pure Fresnel re-
flection is assumed. The ocean surface temperature is
set to 301 K, while the land surface is at 305 K. The
temperature and water vapor profiles are held fixed at
their climatological values (from the cloud model).

It would seem to be desirable to have two categories
of ice in the precipitation structure as the cloud model
did. One category would be graupel or moderate-size
high-density ice, while the other would be aggregate
with larger-size low-density ice. Including the aggregate
category (for example, with mean diameter 2.50 mm
and density 0.1 g cm™?) causes unstable retrievals be-
cause the observations cannot be matched reasonably.
Forward radiative transfer modeting from the RAMS
cloud model hydrometeor fields shows that the low
brightness temperatures (<110 K for both 37 and 85
GHz) of the strong convection land case cannot be
met. This is because nearly all the ice mass in the
RAMS fields is in the aggregate category rather than
the graupel category, and low-density particles do not
scatter enough. For this reason, a single ice category is
used, and the masses of aggregate and graupel are com-
bined for determining the prior distribution from the
cloud model fields. This can be thought of as using the
equivalent volume sphere method of approximating
low-density ice with smaller solid ice. The microphys-

TABLE 3. The variable parameters in the precipitation structure
used in the CaPE validation.

Layer Heights (km) Variable parameters
1 0-2 rain
2 2-4 rain, ice, cloud
3 4-5 rain, ice, cloud
4 5-7 ice, cloud
5 7-9 ice, cloud
6 9-11 ice, cloud
7 11-13 ice

ical consistency of the cloud model output may be vi-
olated by having a single ice category, but the brightness
temperature observations are indicating that aspects of
the microphysical output from the cloud model may
not be correct.

Three sets of microphysical assumptions are made
for the retrievals. The first is that of the RAMS simu-
lation (rain mean diameter of 0.54 mm, ice diameter
of 1.20 mm), the second has larger raindrops and
smaller ice (0.70 and 1.00 mm mean diameter, re-
spectively), and the third uses the Rutledge and Hobbs
fixed intercept (Vy) distributions. Since the ice particles
are modeled as high density (0.9 g cm™2), the unscaled
Eddington approximation is used. The prior distribu-
tion is made from all 45 model output times of the
simulation. The cutoff for raining pixels is 0.04 kg m—2
of rain, which gives 1680 raining columns over the
whole cloud simulation. The somewhat high rain cutoff
is justified by this application to convective rainfall. In
the results shown below, the width of the forward
probability distribution is ¢ = 10 K for all channels,
which usually gave somewhat better results than a
width of ¢ = 5 K.

e. Precipitation retrieval results and comparisons

A comparison of CP-2 radar reflectivity with reflec-
tivity simulated from the hydrometeor profiles retrieved
for the 2152 UTC (ocean) dataset is shown in Fig. 5.
This retrieval used the “standard” setup that has a
mean diameter of 0.70 mm for rain and 1.00 mm for
ice. The basic structure of the simulated reflectivity is
roughly correct in terms of the location of the reflec-
tivity maximum and the falloff with height. The re-
flectivity of the rain in the first cell is about right. The
second rain cell, which is quite distinct in the CP-2
image, is not apparent in the AMPR-derived radar im-
age. This is to be expected, since the 10-GHz brightness
temperature stays level between scans 45 and 50. The
AMPR-derived reflectivity is much too high in the
nonraining area beyond scan 55. This is partly due to
the prior distribution, made only from raining pixels,
that causes there to always be some rain. The 10-GHz
channel is still decreasing for the last few scans and has
not reached its lowest value. This may be due to slight
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F1G. 5. Images of the reflectivity observed by CP-2 and reflectivity
simulated from hydrometeor profiles retrieved from AMPR data for
pixel 25 (nadir) in the 2152 UTC (ocean) dataset. The difference
between the two reflectivity fields is also shown.

brightness temperature warming from cloud water,
which the radar does not see, as well as the lower res-
olution of the 10-GHz channel. Not surprisingly, mi-
crowave radiometry cannot detect the detailed vertical
structure if it does not follow the expectations of the
prior distribution; for example, the retrieval misses
the reflectivity minimum around scan 45 at a height of
8 km.

A more quantitative comparison of the observed and
simulated reflectivity images is shown in the left panel
of Fig. 6, which graphs the rms reflectivity difference
profile. The rms is done for a subset of the data that
has reflectivity above about 24 dBZ. In this water sur-
face situation, the retrieval is relatively good, giving
reflectivities in the rain layer to under 4 dB. Given the
uncertainties in size distributions, retrieving rain re-
flectivity to a factor of 2 (3 dB) may be considered a
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success. The rms difference in reflectivity in the mid-
levels is higher {8-10 dB), mainly because of the over-
estimate of ice above the second cell.

A comparison of radar-derived and AMPR-retrieved
vertically integrated hydrometeor mass content for the
ocean dataset is shown in Fig. 7. The difference in rain
mass between the two radar inversions is perhaps in-
dicative of the error in the radar mass retrieval. The
method of Turk et al. (1994) gives roughly equal in-
tegrated rain mass for the two rain cells (=~2 kg m 2),
while using the formula of Illingworth and Caylor
(1989) gives a much different rain mass for the two
cells (4 vs 2 kg m™2). These two inversions both match
the reflectivity but use different raindrop distributions.
The Zpr is above 3 dB in the second cell, and the
Nlingworth and Caylor (1989) method retrieves mean
raindrop diameters of 0.60-0.65 mm there, as com-
pared to 0.50-0.55 mm in the first cell. The smaller
raindrops in the first cell lead to a higher mass content
in order to give the same reflectivity. The mean di-
ameters of the Turk et al. (1994) method are larger and
more nearly equal for the two cells.

The integrated mass content traces are shown for
AMPR retrievals with the three microphysical as-
sumptions discussed above. The fixed intercept as-
sumption has the smallest mean diameter for raindrops
and thus the largest mass contents, followed by the
0.54-mm and then the 0.70-mm mean drop diameters.
The 10-GHz channel, which is providing most of the
information for rain retrieved over the ocean, is clearly
sensitive to the mean drop diameter and not only to
the rain mass. The AMPR retrievals generally fall be-
tween the two radar estimates of integrated rain mass
for the first precipitation cell. All of the microwave-
retrieved rain masses are lower than the radar ones for
the second cell. This 1s due to the lack of a second 10-
GHz brightness temperature maximum, perhaps due
to relatively fewer but larger drops causing an enhanced
reflectivity without the associated brightness temper-
ature warming. The passive microwave-retrieved in-
tegrated ice mass agrees relatively well with the radar-
derived mass, except for the fixed intercept micro-
physics. The two retrievals with fixed mean particle
size agree closely even though the average ice diameter
is different by 20% (1.00 and 1.20 mm).

Turning now to the 2059 UTC dataset over land,
Fig. 8 shows the reflectivity image comparison. The
reflectivity is overestimated by the AMPR retrieval in
the light precipitation area before scan 17. In the strong
convection, the reflectivity in the lower ice layers is
retrieved fairly well but is too low for the higher ice
layers. This causes the retrieved reflectivity to look
more stratiform, but this is an artifact caused by the
prior information from the cloud model, as will be
explained in the next section. The AMPR-derived re-
flectivity for rain in the two heavy precipitation cells
is far too low compared with the actual CP-2 obser-
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F1G. 6. Root-mean-square difference between the observed CP-2 reflectivity and
the AMPR-derived reflectivity for the 2152 and 2059 UTC datasets.

vations. For retrievals over land, most of the infor-
mation about the rain comes from its correlation with
the ice mass through the prior probability distribution,
because the rain is not sensed directly. Since the re-
trieval method operates on vertical columns, it also
has difficulty with the slanted precipitation cells ob-
served by the radar. The AMPR-derived reflectivity
decreases only slightly in the area around pixel 30 that
has a large drop in observed reflectivity. Over land, the
change in 10-GHz brightness temperature from rain
generally cannot be separated from surface emissivity
changes, and here the retrieval of emissivity (not shown)
closely follows the 10-GHz channel. For the land case,
the retrieved reflectivity is further from observed than
for the ocean case, as shown in the rms reflectivity
difference profile (Fig. 6). The rms errors are around
8 dB in the rain layer, 6 dB in the lower ice levels, and
much larger above.

Comparisons of CP-2 radar and AMPR microwave-
derived integrated hydrometeor mass contents are
shown in Fig. 9. All three microphysical assumptions
for the microwave retrieval grossly underestimate the
integrated rain mass. The Hlingworth and Caylor (1989)
radar inversion method for rain mass was heavily con-
taminated by ice (low Zpg in high Zy), and the cor-
rection technique leaves this estimate of rain mass fairly
uncertain. The fixed-mean diameter AMPR results
follow the radar-derived ice mass reasonably well,
though falling short in the most intense cell. Even
though variable cloud liquid water is in the precipita-
tion structure, none is retrieved over land, although

very small amounts (0.02 kg m™") are retrieved over
the ocean (not shown).

5. Discussion of validation results and algorithm
improvements

The AMPR retrievals made with the Bayesian
method agree most closely with the radar results for
the vertically integrated hydrometeors. For land and
water background surfaces, the microwave-retrieved
integrated ice mass content is fairly close to the radar-
derived ice mass. The integrated rain mass content re-
trieved over the ocean is comparable to the radar-de-
rived rain mass, but the amount of rain retrieved over
land is generally much lower than the radar values. It
should be remembered that there are significant un-
certainties of perhaps a factor of 2 in the radar-derived
hydrometeor mass, which limit the accuracy of the val-
idation. The radar is, however, an independent source
of detailed information about the hydrometeors. Other
sources of error in the comparisons are the differing
resolutions of the AMPR channels and the CP-2 radar
and possible misnavigation of the AMPR data. The
surface rain rate is not explicitly computed with a rain
fallout model, because it is not directly relevant to the
validation process.

The microwave retrieval of hydrometeor profiles as
verified by the simulated radar reflectivity is much
poorer than the integrated quantities. When the actual
hydrometeor structure follows the profile expected
from the prior information, the agreement can be good,
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F1G. 7. Vertically integrated rain and ice mass content derived
from CP-2 radar and retrieved from AMPR data pixel 25 in the 2152
UTC dataset. Three different microphysical assumptions made for
the microwave retrieval are shown, The Turk radar method is that
in Turk et al. (1994), and the IC method is from Illingworth and
Caylor (1989).

but variations from the expected structure are not cap-
tured. This is to be expected from the physics of mi-
crowave radiative transfer through hydrometeors pro-
files. Microwave brightness temperatures are primarily
sensitive to the integrated mass of ice or rain, depending
on frequency, until the optical depth reaches the sat-
uration level. Across the microwave spectrum, there
are too few independent observations to retrieve a de-
tailed vertical structure. Thus, much of the profile
structure information must come from the prior dis-
tribution. The high sensitivity of the 10-GHz channel
to surface properties means that over land there is little
direct information about the rain mass in the micro-
wave measurements.

For these reasons we do not expect the single-pixel
retrievals of hydrometeor profiles to be particularly ac-
curate. It still makes sense to retricve profiles because
various parts of the hydrometeor profiles are what the
microwave radiation directly senses, and the vertical
profile of hydrometeors is important for its connection

'
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to the latent heating profile. Sufficient accuracy in hy-
drometeor profiles and surface rainfall can come about
only by averaging many single-pixel retrievals to find
the climatological mean over a region. Of course, single-
pixel retrievals can provide some useful information
as to the likely rain intensity. But there are inherent
limits to the accuracy of instantaneous microwave pre-
cipitation retrievals. This does not mean, however, that
the retrieval results shown here cannot be improved
upon significantly.

One advantage of the Bayesian framework is that
one can examine explicitly the assumptions made in
order to determine why the method behaved as it did
and find ways to improve it. There are three parts to
the Bayesian precipitation retrieval: the forward prob-
ability distribution, the prior probability distribution,
and choosing the retrieved profile from the posterior
distribution. The most important aspect to consider
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FIG. 8. Images of the reflectivity observed by CP-2 and reflectivity
simulated from hydrometeor profiles retrieved from AMPR data for
pixel 25 (nadir) in the 2059 UTC (land) dataset.
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F1G. 9. Vertically integrated rain and ice mass content derived
from CP-2 radar and retrieved from AMPR data pixel 25 in the 2059
UTC dataset. Three different microphysical assumptions made for
the microwave retrieval are shown.

for the forward distribution are the errors in the radia-
tive transfer modeling. For larger size parameters, there
are uncertainties in modeling the scattering properties
of low-density ice that could be investigated with more
sophisticated scattering models. The assumptions made
to derive particle size distributions from hydrometeor
mass contents are the largest source of uncertainty. Of
course, there will always be uncertainty in hydrometeor
size distributions, but it would be desirable to have a
cloud model predict two parameters of the size distri-
butions to provide correct information about how dis-
tributions vary. With this prior information, both the
mass content and the mean diameter of the hydro-
meteor size distributions could be variable in the re-
trieval process.

Another area of radiative transfer modeling error is
from the surface emissivity. Here, very simple emis-
sivity models are used: a single variable emissivity for
land and a fixed Fresnel surface for water. The flat-
ocean assumption underestimates the surface emissiv-
ity, so light rain may be retrieved in nonraining areas
to compensate. The retrievals for land let the surface
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emissivity be variable over a large range, which prob-
ably reduces further the limited usefulness of the 10-
GHz channel. The water emissivity model could be
improved by using a model that depends on surface
wind speed (e.g., Schluessel and Luthardt 1991), though
there is considerable uncertainty in these types of
models. The wind speed could then be retrieved, per-
haps with the help of prior information connecting
surface wind speed and area rain intensity. The land
emissivity is much more difficult to model, but a model
based on a variable wetness parameter, along with a
known soil or vegetation type, might be possible. Hav-
ing an additional low-frequency channel, such as the
6.8-GHz frequency on the Multifrequency Imaging
Microwave Radiometer, may allow surface emissivity
characteristics to be sensed directly.

The effects of horizontal variability on radiative
transfer is another source of error. The plane-parallel
model used here does not deal with three-dimensional
variability, but the footprint filling problem is not likely
to be too much of a problem for this AMPR retrieval
because of the small footprints. In the future, the foot-
print filling problem could be dealt with by considering
a distribution of precipitation intensities described by
one or two parameters. These parameters could be re-
lated to the type or intensity of precipitation through
three-dimensional cloud modeling, but an efficient way
to perform the forward modeling would have to be
developed. That the retrieval with the larger forward
probability distribution width (¢ = 10 K) agreed better
in terms of simulated radar reflectivity implies that
there are substantial forward modeling errors. In light
of all the possible errors in the radiative transfer mod-
eling, it does not make sense to fit the modeled bright-
ness temperatures exactly to the observations.

Much of the reason for the errors in the profile re-
trievals can be explained by examining the cloud model
output and prior distributions derived from it. There
are two possible sources of error in the prior distribu-
tions. The first is the simplicity of the assumed func-
tional form, that is, the multivariate lognormal distri-
bution. The second is incorrectness or unrepresenta-
tiveness of the hydrometeor profiles produced by the
cloud model. This issue is investigated by examining
scatterplots of the 1680 hydrometeor profiles that went
into making the prior distribution used in the retrievals.
Figure 10 shows the relationship between the rain mass
contents in the two lower layers and also between the
lowest layer rain mass and the ice mass from 5 to 7
km. Along with the scatterplot, shown on the log-log
plots, is the one-sigma ellipse derived from the co-
variance matrix that indicates the shape of the prior
distribution. The two rain layers are well, but not com-
pletely, correlated. The correlation between the 0-2-
km rain mass and the 5-7-km ice mass is quite low.
The distribution of ice is clearly not lognormal, since
it is not symmetric on this plot. The correlation be-
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F1G. 10. Scatterplot of the hydrometeor mass contents produced
by the RAMS simulation for various layers in the precipitation struc-
ture. Also shown is the one sigma ellipse indicating the lognormal
prior distribution fit to the points. The top panel shows the rain mass
for two layers, and the bottom panel shows the lowest layer rain and
midlevel ice. The raining pixel cutoff eliminates the points in the
lower-left corner of the top panel.

tween 2- and 4-km rain and cloud water is very low
(Fig. 11). The cloud liquid water has a bimodal distri-
bution that may be due to RAMS predicting it by de-
termining what water mass is left after the conversion
processes have acted. The result is that the log mean
cloud water content is 0.002 g m~3, which leads to very
low retrieved cloud water contents. The 5-7-km ice-
mass content, and that at 9-11 km, is moderately cor-
related, but the lognormal distribution is not repre-
senting the functional form of the scatter of points at
all well. The scatterplot indicates that when there is a
large amount of ice up high (strong updraft), then there
is also much ice below, but there also can be a lot of
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ice in the lower region without much above. The un-
derestimate of higher-level ice in the land retrieval is
caused by this poor match between the form of the
prior and the cloud model output. Figure 12 breaks
the ice category down into the aggregate and graupel
categories simulated in the RAMS run. As one would
expect from microphysics, the correlation between rain
and graupel is much higher than between rain and ag-
gregate. However, the log-space mean of graupel mass
is 70 times smaller than that of aggregate mass; this is
why it was necessary to use the aggregate category. As
a result, there is a low correlation between rain and
ice, leading to the large underestimate of rainfall for
the land retrieval.

Improvements in the microphysical parameteriza-
tions in cloud models used to generate the prior prob-
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F1G. 11. Scatterplot of the hydrometeor mass contents produced
by the RAMS simulation. The top panel shows the rain and cloud
mass for one layer, and the bottom panel shows the ice mass for two
layers.
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ability distribution should lead to improved hydro-
meteor retrievals with the Bayesian method. Bulk
microphysical parameterizations that predict two pa-
rameters of the hydrometeor size distribution, and per-
haps the ice density, are needed. Having a way to model
ice- and water-mixture particle would be an additional
improvement. The most important aspect of improved
cloud modeling is that the microphysical parameter-
1zations be tested for their effect on those aspects of
hydrometeor distributions that are important for mi-
crowave radiation. Statistical validation of the param-
eterizations should be done using radar and passive
microwave observations.

The algorithm validation with CaPE data performed
here has shown some of the limitations of the simple
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multivariate lognormal form for the prior distribution.
The lognormal distribution, while approximately cor-
rect, can lead to occasional large overestimates of
quantities because of its long tail. The symmetry of the
distribution in log space means that the very small val-
ues in the cloud model output can affect greatly the
high end of the distribution through their influence on
the distribution width. A more flexible way to describe
the relationship between variables in the prior distri-
bution could be used. Such a functional form will re-
quire more parameters and thus more cloud model
data than the simple form used here. Close examination
of cloud model output and measurements of hydro-
meteors could lead to a better functional form for the
prior distribution.

Once the prior and forward distributions are deter-
mined, there is still the matter of how to choose the
retrieved profile from the posterior distribution. The
maximum of the probability density function depends
in which space that function is measured. The current
log-space density function may not be optimal and is
fairly arbitrary. Other ways to use the posterior distri-
bution, besides maximizing the density function,
should be developed, especially for estimating area and
time averages of precipitation. This validation effort
should be considered preliminary because of the small
amount of data and limited range of conditions con-
sidered. In addition to improvements to the existing
algorithm, further work comparing hydrometeor profile
retrievals with radar observations is needed.

6. Summary

A passive microwave precipitation remote sensing
algorithm that retrieves hydrometeor profiles is de-
scribed. Bayes theorem is used to combine a priori mi-
crophysical information from cloud models with for-
ward radiative transfer modeling to select a physically
likely profile that matches the observations. There is
considerable flexibility as to the number of layers and
the parameters that are retrieved in the hydrometeor
profile. The prior probability distribution is assumed
to have a multivariate lognormal form, which contains
the correlations between hydrometeors at various levels
that is important for a unique retrieval. The conditional
probability distribution assumes independent, nor-
mally distributed brightness temperatures around those
simulated with an Eddington radiative transfer model.
A hydrometeor profile is retrieved by finding the max-
imum of the posterior probability density function
computed from the prior and conditional distributions.
The uncertainties in retrieved parameters also may be
computed using the Bayesian framework.

A preliminary validation of the precipitation re-
trieval algorithm is carried out with data from the CaPE
experiment in August 1991 in Florida. Hydrometeor
profiles are retrieved over ocean and land from four
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channel (10 to 85 GHz) observations from AMPR.
Prior information is generated by a simulation of sea-
breeze convection made with the RAMS cloud model.
Validation is provided by data from the CP-2 multi-
parameter radar. Comparisons are made by simulating
reflectivity from the AMPR-derived hydrometeor pro-
files and by inverting the radar data to mass content
using two different methods. For these data over the
ocean, the basic precipitation structure and amount is
retrieved correctly, though too much precipitation is
retrieved in the light and no-rain areas. Over land, the
lower part of the ice layer and the integrated ice content
is retrieved accurately, but too little rain is retrieved.
The causes of the retrieval mistakes are explained in
terms of the assumptions made in the algorithm and
deficiencies in the cloud model microphysical output.
Suggestions are made for improvements to the Bayesian
precipitation retrieval algorithm, and the need to val-
idate cloud model microphysical parameterizations is
discussed.
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